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Non-triviality and the tuning of the scaling parameter in 
scale-covariant h , ( ~ p ~ ) ~  field theory 

N D Gent 
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 9 January 1984 

Abstract. We generalise the results of Rivers on an O(N)-symmetric scale-covariant pseudo- 
free theory by considering the case of an explicit A , ( c ~ ~ ) ~  interaction term in the Lagrangian. 
We find that for general values of the scaling parameter p, the theory is trivial. However, 
in four and five dimensions there is a ‘tuned’ form for p at which the theory may be 
non-trivial. In this case, the theory reduces to the pseudo-free theory (which has the same 
form as the canonical A ( c ~ ~ ) ~  theory to leading order). It thus appears that the ‘hard-core’ 
effects of scale-covariant quantisation act as a Aq4-type interaction. 

1. Introduction 

Recent rigorous results (Aizenman 1981, Frohlich 1982) show that a canonical scalar 
field theory with a Aq4-type interaction is trivial in d > 4 dimensions, and it is widely 
believed that these results also apply to the case of d = 4 dimensions. However, if the 
theory is quantised using the scale-covariant methods of Klauder (198 I ) ,  the inequalities 
used in the proof of the triviality of the canonical theory are no longer valid, and it 
is at least plausible that this non-canonical theory is non-trivial. 

In a recent paper (Rivers 1983) it was shown that the large-N limit of a scale- 
covariant O(N)-symmetric scalar theory with no A q 4  interaction can be reduced to a 
non-trivial pseudo-free theory in d = 4 and d = 5 dimensions by a specific tuning of 
the scaling parameter p that characterises the scale covariance. In particular, in d = 4 
dimensions, p has to be renormalised (this is not unexpected in the sense that it may 
be thought of as a coupling constant), and as the regularisation is removed, it was 
found that the only consistent value of p for a non-trivial theory is zero. This does 
not, however, imply that the theory is the same as the canonical theory, since the tuning 
is made before the regularisation is removed. The non-triviality of this theory can be 
explained in terms of the dynamics of the fields, and it was found that for the particular 
‘tuned’ values of p, bound states and/or resonances occur which mediate the interaction, 
while for general values of p these states do not propagate and hence the theory is trivial. 

In this paper we generalise these results to a scale-covariant O( N)-symmetric scalar 
theory with a A(cp’)’-type interaction term. 

In 9 2 we introduce the model and indicate how a saddle-point development may 
be used to obtain a I /  N expansion for the effective potential. Retaining only leading- 
order terms in this expansion, we obtain the scale-covariant mass-gap equation. 

In 9 3 we consider the renormalisation of the mass-gap equation. The cases of 
d = 4 and d = 5 dimensions are treated separately, and in each of these cases it is 
shown how the scaling parameter p must be tuned if the theory is to be non-trivial. 
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Section 4 indicates briefly how the triviality of the theory may be understood in 

In 0 5 we summarise our findings and comment on their implications regarding a 
terms of the dynamics of the fields. 

recent Monte Carlo study of scale-covariant field theories. 

2. The model 

The theory we wish to describe is that of a set of N scalar fields cp, ( i  = 1, . . . , N ) .  
The Lagrangian density is given by 

and is seen to be O ( N )  invariant. 

functional by using a ‘scale-covariant’ measure 6[q] such that under 
Following Klauder (198 1) we generalise the canonical Green function generating 

+ S(X)cp(X) : S(x) > 0 (2) 

6[cpl transforms covariantly, 

& P I +  F[S(x)l&l. 

Thus, the scale-covariant generating functional is given by 

(3) 

ZEI = 6[q] exp - dx(Y - j .  Q). (4) I -‘ h I 
Klauder has shown that the most general homogeneous form for the scale-covariant 
measure 6[q] can be written formally in terms of the canonical translation-invariant 
measure 9[q] as 

and hence 

zij] = 9 [ ~ ]  exp dx{i(d,q)2 + + m i q 2  +(A0/8N)(cp2)’ I h 

+$Nh S(0) In (q2/ N )  - j .  Q}. 

Using the identities 

S[Q’ - Np] = 9[a] exp - dx a(q2 - Np)  I -i h I 
and 

N 
exp - 5 dx( &(q2)’ +E S(0) In - 

-1 
h 8N 2 
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we can write the scale-covariant'generating functional as 

ZE]= [ 9 [ ~ ] 9 [ a ] 9 [ p ] e x p $  I dx{&-( -V '+mi+ ia )q - j*cp  

+$Nap  +$PA% 6(0) In p +iAoNp2}  (9) 
where a and p may be thought of as auxiliary fields. 

over the cp, fields we have 
This form is now Gaussian in the (pi fields, so by defining x = mi  + i a  and integrating 

-WI = W ~ I W ~ I  e x p ( - ~ / h ) ~ p ,  x; j l  (10) 
where 

% [ p , x ; j ] =  -(2N)-' d x  dy (j(x) - G(x, y ;  x ) j ( y ) ) + i h  Trln(-V2+x) 

(1 1) 

(12) 
Since each term in 2l is 0(1) (Coleman et a1 1974), a saddle point development may 
be used to obtain a 1/N expansion for Zb]. If only leading-order terms in this 
expansion are kept, we find an effective potential "cr(cp) = Cy-(?, xo(cp2), po(cp2)) with 

'V(cp, x, p )  = fxcp2-;Np(x - m i )  +;PA% 6(0) In p SiAoNp2 ++A% 

and 

I 
+ dx{fPh 6(0) In p -&J(x - m i )  +tho p ' )  5 

and 
C-V'X +x(x)>G(xt y ;  x )  = S(X -Y>.  

dk h ( k 2  +x) I (13) 

--- '(U.X,P)/ a =- - (cp ,x .P) l  a , = o ,  
ax 

Po = Q2/ N +h G(Xo), X o =  mi+tAo~o+Ph ~ ( O ) / P O .  (14) 

x = x , ( 0 2 )  aP x =xo(o-) 
P = P"(V21 P = P"(V2) 

i.e. 

Equations ( 1  4) are the scale-covariant equivalent of the mass-gap equation in the 
Hartree-Fock approximation. They may be represented diagrammatically (Ebbutt and 
Rivers 1982) as in figure 1. 

-xE -43- - 
( U )  I bl  I C )  Id) 

le )  

Figure 1. The bare ppropagator with pole at m, is represented in ( a ) ,  the full X-propagator 
in ( b ) ,  the coupling of the X-field to the cp-fields in (c), and the non-local 'hard-core' 
interaction in ( d ) .  The mass-gap equations (14) are then represented in ( e ) .  
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The hard-core interaction is of a non-polynomial form and  is highly singular. 
However, it can be shown that in the 1/N expansion these singularities can be absorbed 
by renormalisation in d = 4 and d = 5 dimensions. 

The unrenormalised mass-gap equation is seen from (14) to be 

X o ( Q 2 ) =  d+iAo(Q2/N +hG(Xo))+@h a(O)((p2/N+hG(Xo))-I (15) 

to leading order in I /  N. 

malise ,yo. 
Since d7"/&p2 = 2xO(cp2), it follows that in order to renormalise 'Ir we must renor- 

3. Renormalisation 

So far our  treatment has been independent of the dimension of space-time. However, 
the renormalisation turns out to be dimension dependent and from now on, we treat 
d = 4 and  d = 5 dimensions separately. 

d = 5 dimensions 

If we use a simple momentum cut-off form of regularisation such that lk l<A,  then 

and 

d5k = 3A5S5 J lkl< \ 

6(0) := 

where S5 = (27r-5 x surface area of unit 4-sphere. 

of A, the mass-gap equation (1 5 )  becomes 
Using these regularised forms, and expanding ( Q ~ /  N + hG(xo))-' in negative powers 

Now, since P can. be thought of as a coupling constant, we expect to have to 
renormalise it. Thus we introduce the regularised form PA. In order to renormalise 
(18), we must choose P,,, A. and mo as functions of A such that all physical quantities 
remain finite in the limit A + W. 

It will be seen that if we choose PA, A. and ma such that 

1 -PA: +iAOAh& = a -t M I A ,  (19) 

where a is an  arbitrary dimensionless parameter and  M is an  arbitrary parameter with 
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the dimension of mass, then (18) becomes 

xo - 
hSsA ( M / A + a )  

2 ( M / A + a - l )  

Two separate cases are now seen to be of interest. These are the cases a = 0 and a # 0 
when the left-hand side of (20) is O(Ao) and O(A') respectively. We treat these cases 
independently. 

a # O  

From (20) we see that 

x0a = ( m i  +/3,,$i2 +ihohSsA3)  +O(A-'). 

Now if we renormalise mi such that 

mi +PA$A2 +ghohSsA3 = am', 

where m is an arbitrary parameter with the dimension of mass, then 

,yo= m2 (22) 

and it is seen that xo is independent of cp2, and thus to leading order in 1 / N ,  the 
effective potential Y((p2) is given by 

Y(Q') = m2Q' +constant. 

The theory thus appears to describe a free theory for arbitrary a # 0. 

a=O 

When a = 0, the left-hand side of (20) is O(Ao)), the same order as the terms in Cp2/N, 
and thus ,yo is dependent on C p 2 /  N .  

More explicitly 

which, by a suitable renormalisation of A. and mo, can be written as 

Xo/hR= m g h R + $ Q 2 / N  + $ h s ~ T X i / ~  (24) 
where hR and mR are finite quantities. 

Equation (24) is identical to the mass-gap equation for the pseudo-free theory in 
d = 5 dimensions which in turn is identical to that for the canonical theory in d = 5 
dimensions (Rembiesa 1978). This does not, however, imply that the theory will be 
trivial, as is the canonical theory in d = 5 dimensions, since the derivation of (24) 
follows a different path from that of the canonical mass-gap equation. Indeed, we 
have seen that this non-trivial behaviour can occur only when a = 0, and from (19) it 
will be seen that this restricts P,, such that 

( 2 5 )  / 3 , , = $ ( 1  +hoAhSs/2- MIA). 
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t 

Figure2. In five dimensions, the parameters p, ,  M and A, of a non-trivial theory are 
restricted to the plane p,, = ? ( I  +A0AhS,/2 - M/.A). 

For the regularised non-trivial theories, PI\ is restricted to the plane shown in 
figure 2 .  

As the cut-off is removed (A+oo), M / A + O ,  and p ,  is further restricted to the line 
P ,  = $( 1 +AoAhS,/2). This result is in agreement with the work of Rivers (1983) where 
p ,  =$(l - M / A )  was shown to be the only value of PI\ consistent with a non-trivial 
pseudo-free theory. 

In summary we see that, in the large-N limit, there is no difference in d = 5 
dimensions between the renormalised scale-covariant O(N)-invariant pseudo-free (i.e. 
A. = 0) scalar theory and the renormalised scale-covariant A o ( ~ ' ) '  scalar theory: the 
'hard-core' effects of scale-covariant quantisation behave as a Acp4-type interaction. 

d = 4 dimensions 

We will now consider the theory in four dimensions. Using the same momentum 
cut-off as before, we have 

with S4 = ( 2 ~ ) - ~  x surface area of unit 3-sphere. 
Substituting these expressions in (1 5 )  and expanding in negative powers of A, we find 

xo [ 1 +  (A0ts4  --- f )  ln- "':xO] 
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In order that the renormalised xo be dependent on cp2 (and hence the resulting theory 
be non-trivial) we must regularise /3 = PA in such a way that 

remains finite as A + CO. 

It can readily be seen that if we choose PA such that’r 

( A o $ I s 4 - $ ~ ) - ’  +ln(A2/M2)= 1/g (30) 

(A&S4 -fP,,)-l(mi +p,;A’ +A&S4h2) = m 2 / g  (31) 

where M is an arbitrary parameter with dimension of mass, g is a dimensionless 
parameter and m is a massive parameter, then (28) becomes 

and mo such that 

Xol  g - Xo ln(Xo/ M2) - m2/  g = (21 f&)Q2/ N. (32) 

This equation is identical to the pseudo-free and canonical mass-gap equations in 

We see from (30) that a non-trivial theory is obtained as the cut-off is removed 
four dimensions (Coleman et a1 1974). 

only if 

This is consistent with the work of Rivers on the pseudo-free theory where it was found 
that in four dimensions a non-trivial solution can be obtained only if 

Thus, it appears that in d = 4  dimensions also, the ‘hard-core’ effects of scale- 
covariant quantisation behave as a Ap4-type interaction. 

\ 0. 

4. Dynamics 

The reason for the specific tuning of the scaling parameter P in order to achieve 
non-triviality may be understood in terms of the dynamics of the theory. From (lo), 
(1 1) and (12) we can calculate the form of the propagators for the pi, x and p fields 
at pi = 0, ,y = xo(0) = m2, p = po(0). If we write the propagators symbolically as in figure 
3(a), then, to leading order in the 1/N expansion, we may form a composite scalar 
field x‘ whose interaction with the cp-fields is identical to that of the x- field, by summing 
all the diagrams of the form in figure 3(6) .  We find in the large-N limit 

where 

d p [ ( k - p ) ’  + m 2 ] - ‘ [ p 2 +  m’1-I 

(34) 

(35) 

and it can be shown that for general values of p the denominator diverges. In this 
case, the X’-field does not propagate and since this field mediates all interactions the 
theory is trivial. 

t This form generalises that used by Rivers and shows that the canonical mass-gap equation should also 
result from the pseudo-free theory in four dimensions. 
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lu I l b l  

Figure 3. Representing the x-x, p-p and x - p  propagators as in ( a ) ,  we can form a composite 
field x’ (whose interaction with the cp-fields is identical to that of the ,y-field) as in ( b ) ,  
each term of which is of the same order in I /  N. 

However, for the specific ‘tuned’ value of p, the divergences in the denominator 
cancel and the ,y’-fields propagate, leading to a non-trivial interaction between the 

Since the mass-gap equations are identical to their canonical counterparts when p 
is tuned, and since the effective potential is uniquely determined by the mass-gap 
equation, the ,$-field can be understood in terms of bound-states and resonances of 
the cp-fields as in Rembiesa (1978) and Abbott et a1 (1976). 

cp-fields. 

5. Conclusion 

We have shown that the work of Rivers on the scale-covariant pseudo-free theory is 
directly generalisable to a theory with a Aocp4-type interaction, and that the theory may 
be non-trivial in d = 4 and d = 5 dimensions for a specific choice of the scaling parameter 
p. Indeed, for this specific ‘tuned’ value of p, the scale-covariant A o ( ~ 2 ) 2  theory appears 
identical to the pseudo-free theory which in turn appears identical to the canonical 
A o ( ~ 2 ) 2  theory at the leading order. It thus seems that the ‘hard-core’ effects of 
scale-covariant quantisation act as a Acp4-type interaction. 

Our results still suffer from the problems of the 1 /  N expansian, and no conclusive 
answer as to the non-triviality of the scale-covariant theory can be made. However, 
it appears that if a non-trivial theory does exist, it will require a very specific tuning 
of the scaling parameter. This tuned value of p,,, is dependent on A. and in d = 4  
dimensions it is given by 

s4 2 
2 l / g  +In ( M 2 / A 2 )  P.A = ha-- 

to leading order in 1/N. 
In a recent paper (Ogielski 1983), a Monte Carlo study of the four-dimensional 

scale-covariant h o p 4  theory was carried out. The results suggest that for the values of 
p and A. in the study, the theory is trivial. This, however, is not surprising as no 
attempt has been made to tune p,,. Our results imply that for a general value of p,,, 
the theory is indeed trivial. The possibility of a ‘tuned’ Monte Carlo study is now 
being considered and results will be given elsewhere. 
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